KSRP Ablation Enhances Brown Fat Gene Program in White Adipose Tissue Through Reduced miR-150 Expression
نویسندگان
چکیده
Brown adipose tissue oxidizes chemical energy for heat generation and energy expenditure. Promoting brown-like transformation in white adipose tissue (WAT) is a promising strategy for combating obesity. Here, we find that targeted deletion of KH-type splicing regulatory protein (KSRP), an RNA-binding protein that regulates gene expression at multiple levels, causes a reduction in body adiposity. The expression of brown fat-selective genes is increased in subcutaneous/inguinal WAT (iWAT) of Ksrp(-/-) mice because of the elevated expression of PR domain containing 16 and peroxisome proliferator-activated receptor gamma coactivator 1α, which are key regulators promoting the brown fat gene program. The expression of microRNA (miR)-150 in iWAT is decreased due to impaired primary miR-150 processing in the absence of KSRP. We show that miR-150 directly targets and represses Prdm16 and Ppargc1a, and that forced expression of miR-150 attenuates the elevated expression of brown fat genes caused by KSRP deletion. This study reveals the in vivo function of KSRP in controlling brown-like transformation of iWAT through post-transcriptional regulation of miR-150 expression.
منابع مشابه
Essential Role for miR-196a in Brown Adipogenesis of White Fat Progenitor Cells
The recent discovery of functional brown adipocytes in adult humans illuminates the potential of these cells in the treatment of obesity and its associated diseases. In rodents, brown adipocyte-like cells are known to be recruited in white adipose tissue (WAT) by cold exposure or β-adrenergic stimulation, but the molecular machinery underlying this phenomenon is not fully understood. Here, we s...
متن کاملmiR-30 Promotes Thermogenesis and the Development of Beige Fat by Targeting RIP140
Members of the microRNA (miR)-30 family have been reported to promote adipogenesis and inhibit osteogenesis, yet their role in the regulation of thermogenesis remains unknown. In this study, we show that miR-30b/c concentrations are greatly increased during adipocyte differentiation and are stimulated by cold exposure or the β-adrenergic receptor activator. Overexpression and knockdown of miR-3...
متن کاملmiRNA-32 Drives Brown Fat Thermogenesis and Trans-activates Subcutaneous White Fat Browning in Mice
Brown adipose tissue (BAT) activation and subcutaneous white fat browning are essential components of the thermogenic response to cold stimulus in mammals. microRNAs have been shown to regulate both processes in cis. Here, we identify miR-32 as a BAT-specific super-enhancer-associated miRNA in mice that is selectively expressed in BAT and further upregulated during cold exposure. Inhibiting miR...
متن کاملGlucocorticoids Transcriptionally Regulate miR-27b Expression Promoting Body Fat Accumulation Via Suppressing the Browning of White Adipose Tissue
Long-term glucocorticoid (GC) treatment induces central fat accumulation and metabolic dysfunction. We demonstrate that microRNA-27b (miR-27b) plays a central role in the pathogenesis of GC-induced central fat accumulation. Overexpression of miR-27b had the same effects as dexamethasone (DEX) treatment on the inhibition of brown adipose differentiation and the energy expenditure of primary adip...
متن کاملZbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis.
Brown and beige adipocytes convert chemical energy into heat through uncoupled respiration to defend against cold stress. Beyond thermogenesis, brown and beige fats engage other metabolic tissues via secreted factors to influence systemic energy metabolism. How the protein and long noncoding RNA (lncRNA) regulatory networks act in concert to regulate key aspects of thermogenic adipocyte biology...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 63 شماره
صفحات -
تاریخ انتشار 2014